Facial feature extraction using a probabilistic approach
نویسندگان
چکیده
Facial features such as lip corners, eye corners and nose tip are critical points in a human face. Robust extraction of such facial feature locations is an important problem which is used in a wide range of applications. In this work, we propose a probabilistic framework and several methods which can extract critical points on a face using both location and texture information. The new framework enables one to learn the facial feature locations probabilistically from training data. The principle is to maximize the joint distribution of location and apperance/texture parameters. We first introduce an independence assumption which enables independent search for each feature. Then, we improve upon this model by assuming dependence of location parameters but independence of texture parameters. We model location parameters with a multivariate Gaussian and the texture parameters are modeled with a Gaussian mixture model which are much richer as compared to the standard subspace models like principal component analysis. The location parameters are found by solving a maximum likelihood optimization problem. We show that the optimization problem can be solved using various search strategies. We introduce local gradient-based methods such as gradient ascent and Newton’s method initialized from independent model locations both of which require certain non-trivial assumptions to work. We also propose a multi-candidate coordinate ascent search and a coarse-to-fine search strategy which both depend on efficiently searching among multiple ∗Corresponding author Email addresses: [email protected] (Mustafa Berkay Yılmaz), [email protected] (Hakan Erdoğan), [email protected] (Mustafa Ünel) Preprint submitted to Signal Processing: Image Communication March 7, 2012 candidate points. Our framework is compared in detail with the conventional statistical approaches of active shape and active appearance models. We perform extensive experiments to show that the new methods outperform the conventional approaches in facial feature extraction accuracy.
منابع مشابه
Improving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملModular PCA and Probabilistic Similarity Measure for Robust Face Recognition
This paper addresses a probabilistic approach to develop a robust face recognition system to partial variations such as occlusions. Based on the statistical feature extraction methods, we take the modular PCA method which finds eigenspace not for the set of whole images but for the sets of local image patches. Through the local feature extraction approach, we try to overcome the drawback of who...
متن کاملAnalysis and Synthesis of Facial Expressions by Feature-Points Tracking and Deformable Model
Face expression recognition is useful for designing new interactive devices offering the possibility of new ways for human to interact with computer systems. In this paper we develop a facial expressions analysis and synthesis system. The analysis part of the system is based on the facial features extracted from facial feature points (FFP) in frontal image sequences. Selected facial feature poi...
متن کاملAutomatic Face Recognition via Local Directional Patterns
Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...
متن کاملProbabilistic Facial Feature Extraction Using Joint Distribution of Location and Texture Information
In this work, we propose a method which can extract critical points on a face using both location and texture information. This new approach can automatically learn feature information from training data. It finds the best facial feature locations by maximizing the joint distribution of location and texture parameters. We first introduce an independence assumption. Then, we improve upon this mo...
متن کاملProbabilistic Corner Detection for Facial Feature
After more than 35 years of resarch, face processing is considered nowadays as one of the most important application of image analysis. It can be considered as a collection of problems (i.e., face detection, normalization, recognition and so on) each of which can be treated separately. Some face detection and face recognition techniques have reached a certain level of maturity, however facial f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Sig. Proc.: Image Comm.
دوره 27 شماره
صفحات -
تاریخ انتشار 2012